Price:
8457 EUR
Contact
Brown University
Description
You should take this course if you have an interest in machine learning and the desire to engage with it from a theoretical perspective. Through a combination of classic papers and more recent work, you will explore automated decision-making from a computer-science perspective. You will examine efficient algorithms, where they exist, for single-agent and multi-agent planning as well as approaches to learning near-optimal decisions from experience. At the end of the course, you will replicate a result from a published paper in reinforcement learning.Why Take This Course?This course will prepare you to participate in the reinforcement learning research community. You will also have the opportunity to learn from two of the foremost experts in this field of research, Profs. Charles Isbell and Michael Littman.
Specific details
Category of Education
Computer Sciense and IT
Comments (0)